Identifikasi Tingkat Kematangan Buah Pinang Menggunakan K-Nearest Neighbor Berdasarkan Fitur Tekstur dan Warna

نویسندگان

چکیده

This research builds a system for identifying the maturity level of areca fruit based on digital image processing using texture and color features through Gray Level Co-Occurrence Matrix (GLCM) Color moments. The initial stage is pre-processing so that it can be processed to next stage, namely feature extraction. Texture extraction was performed (GLCM), correlation value moments, mean used in this study. Classification done have been extracted before. study uses K-Nearest Neighbor (KNN) classification method. Tests were carried out determine parameters cause changes results with scenarios including determining number Neighbors KNN. By 1 KNN classifier, best accuracy 86.36% process fruit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph

We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.

متن کامل

Unsupervised K-Nearest Neighbor Regression

In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...

متن کامل

Neighbor-weighted K-nearest neighbor for unbalanced text corpus

Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...

متن کامل

Evolving edited k-Nearest Neighbor Classifiers

The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information and Technology

سال: 2023

ISSN: ['2617-3573']

DOI: https://doi.org/10.32938/jitu.v2i2.4205